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Abstract We consider finite element methods for the
Darcy equations that are designed to work with stan-
dard, low order C0 finite element spaces. Such spaces
remain a popular choice in the engineering practice be-
cause they offer the convenience of simple and uniform
data structures and reasonable accuracy. A consistently
stabilized method [20] and a least-squares formulation
[18] are compared with two new stabilized methods. The
first one is an extension of a recently proposed polyno-
mial pressure projection stabilization of the Stokes equa-
tions [5; 13]. The second one is a weighted average of a
mixed and a Galerkin principles for the Darcy problem,
and can be viewed as a consistent version of the classical
penalty stabilization for the Stokes equations [9]. Our
main conclusion is that polynomial pressure projection
stabilization is a viable stabilization choice for low order
C0 approximations of the Darcy problem.

Keywords Darcy flow · mixed Galerkin methods ·
stabilization · projection · least-squares methods

1 Introduction

Standard C0 finite element spaces of low polynomial or-
ders remain a popular choice in many engineering ap-
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plications. Besides their simplicity, they offer reasonable
accuracy and uniform data structures when using equal
order interpolation. The latter helps to improve paral-
lel efficiency of solution algorithms. However, for many
problems of practical interest, C0 spaces cannot be used
without some form of stabilization. In this paper we con-
sider finite element methods for the elliptic boundary
value problem

∇ · u = f in Ω (1)
u +∇p = 0 in Ω (2)

u · n = 0 on Γ (3)

that are stable and accurate when the velocity u and the
pressure p are approximated by the same, low order C0

finite element spaces. In (1)-(3), Ω denotes a bounded
open region in Rn, n = 2, 3 with a Lipschitz continu-
ous boundary Γ and f satisfies the compatibility
condition

∫
Ω

f = 0. Equations (1)-(3) are often called
the Darcy flow problem. This model (with appropriate
material parameters added) arises in applications from
petroleum, civil and electrical engineering such as flow in
porous media, heat transfer, and semiconductor device
modeling. Similar equations arise in computational al-
gorithms that require projections onto divergence free
subspaces. Two examples are fractional step methods
[17] for incompressible flow, where the half-step veloc-
ity must be projected onto a discretely divergence free
manifold, and multiphysics environmental modeling [11]
which requires conservative remap of vector fields be-
tween different grids.

Elimination of u from (1)-(3) gives a scalar second
order elliptic PDE for the pressure. This problem can be
solved by a Galerkin method with C0 elements. In this
case, velocity is a derived quantity whose accuracy is of
one order less than the accuracy of the pressure. Thus,
when p is the most important variable one solves the
second order problem, while for applications where u is
more important, one uses the first-order system (1)-(3).

A mixed variational formulation of (1)-(3) is well-
posed in H(Ω,div )×L2

0(Ω). It is well-known that stable
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and accurate mixed finite elements for this problem are
subject to an inf-sup condition; see [7]. In particular,
this condition rules out low-order C0 approximations of
the pressure and velocity. Typically, stable velocity ap-
proximations are continuous only in the normal direction
and are known as face elements; see [7]. Mixed methods
have valuable properties such as local mass conservation.
However, they are more complex to implement and lead
to saddle point systems which can be more difficult to
solve, unless one is willing to consider hybridization [7].
More importantly, though, lowest order face elements
experience problems on non-affine grids where the use
of the Piola transform in their definition leads to loss
of approximation property. Specifically, on unstructured
quadrilateral and hexahedral grids, the lowest order face
elements fail to recover constant fields. This leads to a
loss of convergence in the velocity variable in the mixed
method; see [1] and [21]. Therefore, mixed formulations
of (1)-(3) that work with standard C0 element pairs can
be very useful on such grids.

Of course, if used with the standard mixed form of
(1)-(3), equal-order C0 finite elements are unstable. To
use C0 elements in the Darcy problem, the mixed weak
form must be either modified or replaced by some other
form. In this paper we focus on four different possibilities
to accomplish this. The first one is to use the classical
least-squares approach for the first-order system (1)-(3),
formulated in [18], [15] and [14]. The second is to stabi-
lize the mixed problem by using the residual of (2). This
approach, proposed in [20] is similar to Galerkin least-
squares methods for the Stokes equations where stabi-
lization relies on the residual of the momentum equation.

The other two approaches to stabilize (1)-(3) have
not been, to the best of our knowledge, studied in the
literature. The first one extends the polynomial pressure
projection stabilization, developed for the Stokes equa-
tions in [5; 13], to the mixed variational form of (1)-(3).
We note that our method differs from the pressure pro-
jection stabilization of Becker and Brack [2] and Codina
and Blasco [12] in several important ways. First, both of
these methods project the gradient of the pressure vari-
able. In [12] the pressure gradient is projected onto the
continuous velocity space which leads to a global prob-
lem. In [2] the gradient is projected locally onto element
patches by solving small local problems. However, this
method requires nested spaces while the method of Co-
dina and Blasco does not need this assumption. In con-
trast, our approach projects the pressure variable onto a
discontinuous polynomial space defined with respect to
the original element partition. Consequently, the method
is both local and does not require nested grids. A related
approach is the pressure jump stabilization method of
Silvester [22]. This method is designed for discontinuous
pressure spaces and so it cannot be extended to stabilize
equal order C0 formulations. The last method considered
in the paper uses a weighted average of the mixed and
the Galerkin weak equations. It can be viewed as an ex-

tension of the classical penalty stabilization of Brezzi and
Pitkaranta [9] obtained by using the weak Galerkin form
of the residual. Consequently, this method is consistent.

Since our computational study focuses on methods
that rely on standard implementations with low order
C0 elements, we did not include methods that use non-
conforming elements [19], edge based assembly [10], or
discrete negative norms [6]. For the same reasons we
did not consider Discontinuous Galerkin meth-
ods. A Discontinuous Galerkin method for the
Darcy problem has been recently proposed in [8].
Each one of these methods offers specific advantages and
can be used in lieu of mixed methods for (1)-(3). For
example, the method of [19] is applicable to the
Darcy-Stokes problem, while the DG method in
[8] is well-suited for problems with less regular
solutions.

The paper is organized as follows. The four methods
that are the subject of this study are presented in Sec-
tion 2. Numerical results for the methods are collected
in Section 3. Our conclusions are summarized in Section
4.

2 Stable C0 finite element formulations

In this paper we consider finite element methods for (1)-
(3) that use velocity and pressure approximations of the
same interpolation order, and defined with respect to the
same partition Th of the domain Ω into finite elements
Ωe. For simplicial elements we recall the affine families
of Lagrange finite element spaces

Pk = {uh ∈ C0(Ω) |uh
|Ωe

∈ Pk(Ωe); ∀Ωe ∈ Th} , (4)

where Pk(Ωe) is the space of complete polynomials of
degree k defined on the element Ωe.

For quadrilateral and hexahedral elements we con-
sider the Lagrange spaces

Qk = {uh ∈ C0(Ω) |uh
|Ωe

= ûh ◦F−1; ûh ∈ Qk(Ω̂e)} ,(5)

where Ω̂e is a reference element, F : Ω̂e 7→ Ωe is a bilin-
ear or trilinear mapping, and Qk is the space of all poly-
nomials on Ω̂e whose degree does not exceed k in each
coordinate direction. Unless Ωe is a parallelogram or a
parallelepiped, uh is not a piecewise polynomial function.
We will use the symbol Rk to denote both kinds of finite
element spaces. Vector valued finite element spaces will
be denoted in bold face, e.g., Rk. We assume that k = 1
or k = 2.

The spaces Rk have the following approximation prop-
erty: given a function u ∈ Hk+1(Ω) there exist uh ∈ Rk

such that

‖u− uh‖0 + h‖∇u−∇uh‖0 ≤ Chk+1‖u‖k+1 . (6)
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2.1 Polynomial pressure projection stabilization

The mixed form of (1)-(3) is to seek (u, p) in H0(Ω,div )
×L2

0(Ω) such that∫
Ω

q∇ · u dΩ −
∫

Ω

fq dΩ = 0 ∀q ∈ L2(Ω) (7)∫
Ω

v · u dΩ −
∫

Ω

p∇ · v dΩ = 0 ∀v ∈ H0(Ω,div ) (8)

Equations (7)-(8) are the first-order optimality system
for the saddle-point of the Lagrangian

L(v, q) =
1
2

∫
Ω

|v|2 dΩ −
∫

Ω

q(∇ · v − f) dΩ . (9)

If we define the bilinear form

Q(u, p;v, q) =
∫

Ω

q∇·u dΩ+
∫

Ω

v·u dΩ−
∫

Ω

p∇·v dΩ .(10)

and the linear functional

F (v, q) =
∫

Ω

fq dΩ ,

problem (7)-(8) can be written compactly as: seek (u, p) ∈
H0(Ω,div )× L2

0(Ω) such that

Q(u, p;v, q) = F (v, q) ∀(v, q) ∈ H0(Ω,div )×L2
0(Ω) .(11)

To approximate the solution of (7)-(8) we consider the
equal-order pair (Vh, Sh) where

Vh = Rk ∩H0(Ω,div ) and Sh = Rk ∩ L2
0(Ω) . (12)

For k = 1, 2 the pair (Vh, Sh) does not verify the inf-sup
condition relevant to (7)-(8). As a result, the discrete
mixed weak problem: seek (uh, ph) ∈ Vh ×Sh such that∫

Ω

qh∇ · uh dΩ −
∫

Ω

fqh dΩ = 0 ∀qh ∈ Sh (13)∫
Ω

vh · uh − ph∇ · vh dΩ = 0 ∀vh ∈ Vh (14)

is not stable. Following [5; 13], we stabilize (13)-(14) us-
ing a local L2 projection operator onto the discontinuous
polynomial space

[Pm] = {qh ∈ L2(Ω) | qh
|Ωe

∈ Pm(Ωe); ∀Ωe ∈ Th} , (15)

where m = k − 1. In (15) Th can be a simplicial or a
non-simplicial partition of Ω into finite elements. Given
a function q ∈ L2(Ω) the projection operator Πm :
L2(Ω) 7→ [Pm] is defined by:

Πmp = argmin
1
2

∫
Ω

(Πmq − p)2 dΩ . (16)

Therefore,
Πmq = qh ∈ [Pm]

if and only if∫
Ω

rh(Πmq − q) dΩ = 0 ∀rh ∈ [Pm] . (17)

Equation (17) is a necessary condition for the minimizer
in (16). Because [Pm] is discontinuous, (17) uncouples
into local element problems∫

Ωe

rh(Πmq− q) dΩe = 0 ∀rh ∈ Pm(Ωe); ∀Ωe ∈ Th ,(18)

which can be solved independently of each other at the
element level. For affine families of piecewise linear ele-
ments defined on simplicial triangulations, (18) admits a
particularly simple solution. For such elements restric-
tions of nodal basis shape functions Ni onto an element
Ωe coincide with the barycentrics λj , j = 1, . . . , n + 1,
where n is the space dimension. A simple calculation re-
veals that

Π0λj =
1

n + 1
. (19)

To stabilize the mixed form (10) we consider the pro-
jection operator Πk−1, the bilinear form

C(ph, qh) =
∫

Ω

(ph −Πk−1p
h)(qh −Πk−1q

h) dΩ , (20)

and modify (10) to

QP (uh, ph;vh, qh) = Q(uh, ph;vh, qh)+αC(ph, qh) ,(21)

where α = α̂ 1
L2 , α̂ is a dimensionless, positive real pa-

rameter independent of h, and L is a characteristic length
scale. The polynomial pressure projection stabilized method
is to seek (uh, ph) in Vh × Sh, such that

QP (uh, ph;vh, qh) = F (vh, qh) ∀(vh, qh) ∈ Vh×Sh .(22)

This finite element method can also be derived from
(9) penalized by

1
2
C(q, q) =

α

2
‖(I −Πk−1)q‖2

0 .

Indeed, it is not hard to see that the variational equation
in (22) is equivalent to the Euler-Lagrange equation asso-
ciated with the saddle-point of the penalized Lagrangian

LP (v, q) =
1
2

∫
Ω

|v|2 dΩ −
∫

Ω

q(∇ · v − f) dΩ

−α

2
‖(I −Πk−1)q‖2

0 . (23)

2.2 Galerkin stabilization

Elimination of u from (1)-(2) gives the second order
problem

−4p = f in Ω (24)
∂p

∂n
= 0 on Γ (25)

where f is subject to the constraint
∫

Ω
f = 0. A

weak Galerkin form of (24)-(25) is to seek p ∈ H1(Ω)/R
such that

G(p, q) = l(q) ∀q ∈ H1(Ω)/R (26)
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where

G(p, q) =
∫

Ω

∇p · ∇q dΩ and l(q) =
∫

Ω

fq dΩ .

It is well-known that the Galerkin finite element method:
seek ph ∈ Sh/R such that

G(ph, qh) = l(qh) ∀qh ∈ Sh/R (27)

is stable and optimally accurate with the C0 spaces (4)-
(5).

To define the second stabilized mixed method for the
Darcy problem we modify (10) to

QG(uh, ph;vh, qh) = Q(uh, ph;vh, qh)+αh2G(ph, qh) ,(28)

where α is a real, dimensionless parameter independent
of h. The Galerkin stabilized mixed method is to seek
(uh, ph) in Vh × Sh, such that

QG(uh, ph;vh, qh) = FG(vh, qh) ∀(vh, qh) ∈ Vh×Sh ,(29)

and where

FG(vh, qh) = F (vh, qh) + αh2l(qh) .

The stabilized method (29) can be viewed as a weighted
average of the unstable mixed method (13)-(14) and the
stable Galerkin method (27). Alternatively, we can view
(29) as obtained by adding the weak residual

R(ph, qh) = G(ph, qh)− l(qh)

weighted by αh2 to the unstable mixed problem. As a
result, the Galerkin stabilized method is consistent in the
sense that all sufficiently smooth solutions of the Darcy
problem also satisfy (29). Yet another way to derive (29)
is to consider the penalized Lagrangian

LG(v, q) =
1
2

∫
Ω

|v|2 dΩ −
∫

Ω

q(∇ · v − f) dΩ

−αh2

(
1
2

∫
Ω

|∇q|2 dΩ −
∫

Ω

fq dΩ

)
. (30)

We note that the stabilizing term αh2G(ph, qh) is the
same as in the classical penalty stabilization of the Stokes
equations [9]. However, the presence of the term αh2l(qh)
makes (29) a consistent method.

2.3 Strong residual stabilization

An alternative consistently stabilized method was re-
cently proposed in [20]. In this method the mixed form
(13)-(14) is stabilized by using the residual of (2). The
form (10) is modified to

QR(uh, ph;vh, qh) = Q(uh, ph;vh, qh)

+
1
2

∫
Ω

(u +∇p) · (−v +∇q) dΩ . (31)

and the stabilized method is to seek (uh, ph) in Vh×Sh,
such that

QR(uh, ph;vh, qh) = F (vh, qh) ∀(vh, qh) ∈ Vh×Sh .(32)

It is straightforward to check that

QR(vh, qh;vh, qh) =
1
2

(
‖vh‖2

0 + ‖∇q‖2
0

)
,

that is QR(·, ·) is coercive in L2(Ω)×H1(Ω)/R. In [20]
the following error estimate is proved for the finite ele-
ment solutions of (32):

‖u− uh‖0 + ‖p− ph‖1

≤
(

inf
vh∈Vh

‖u− vh‖0 + inf
qh∈Sh

‖p− qh‖1

)
. (33)

The finite element method (32) can be derived from
(9) penalized by the least-squares term

1
4
‖v +∇q‖2

0 .

Indeed, it is easy to check that (32) is the Euler-
Lagrange equation for the penalized Lagrangian

LR(v, q) =
1
2

∫
Ω

|v|2 dΩ −
∫

Ω

q(∇ · v − f) dΩ

−1
4
‖v +∇q‖2

0 . (34)

We remark that in many cases stabilized meth-
ods can be derived through an enrichment of a
Galerkin method by bubble functions followed by
static condensation [16]. The pressure-projection
method (22), on the other hand, is an excep-
tion to this rule. Its structure resembles that of a
penalty method with the crucial difference that
the stabilizing form (20) is symmetric and semi-
definite rather than positive definite, as in penalty
methods. Therefore, the role of the stabilizing
term is to act as a filter that removes destabi-
lizing modes.

2.4 A Least-squares method

The polynomial pressure projection method (22), the
Galerkin stabilized method (29) and the residual stabi-
lized method (32) are derived from the unstable mixed
form (10), i.e., they represent regularizations of the same
mixed variational equation. A least-squares method, on
the other hand, is based on a completely new variational
principle associated with unconstrained global minimiza-
tion of a problem-dependent quadratic functional. For a
survey of least-squares methods we refer to [3]. In this
paper we compare (22), (29) and (32) with a method
based on minimization of the functional

J(v, q) =
1
2

(
‖∇ · v − f‖2

0 + ‖v +∇q‖2
0

)
. (35)
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This functional, defined by summing up the L2 norms
of the residuals of (1)-(2), was originally proposed in
[18]. Least-squares methods for (1)-(2) that use nega-
tive norms were developed by Bramble et. al. [6]. Such
methods require approximation of the inner product on
H−1 and for this reason they are not included in our
study.

It is easy to see that all sufficiently smooth solutions
of (1)-(2) are minimizers of (35) and vice versa. This
observation is the basis of least-squares finite element
methods for the Darcy flow: such methods are defined
by restricting minimization of (35) to the finite element
pair (Vh, Sh). The minimizers can be computed by set-
ting the first variations of the least-squares functional to
zero, i.e., by solving the Euler-Lagrange equation: seek
(uh, ph) ∈ Vh × Sh such that

QLS(uh, ph;vh, qh) = FLS(vh, qh) ∀(vh, qh) ∈ Vh×Sh ,(36)

where

QLS(uh, ph;vh, qh) =
∫

Ω

∇ · uh∇ · vh dΩ

+
∫

Ω

(
uh +∇ph

)
·
(
vh +∇qh

)
dΩ ,

and
FLS(vh, qh) =

∫
Ω

f∇ · vh dΩ .

The least-squares method is consistent because all suffi-
ciently smooth solutions of the Darcy problem satisfy the
weak equation (36). The least-squares form is coercive on
H(Ω,div )×H1(Ω), that is,

QLS(u, p;u, p) ≥ C
(
‖u‖2

H(Ω,div )
+ ‖p‖2

1

)
(37)

for all (u, p) ∈ H(Ω,div ) × H1(Ω). The form is also
continuous and, using standard elliptic finite element ar-
guments, one can show that

‖u− uh‖H(Ω,div ) + ‖p− ph‖1

≤ C

(
inf

vh∈Vh
‖u− vh‖H(Ω,div ) + inf

qh∈Sh
‖p− qh‖1

)
.(38)

For further details we refer to [18], [14] and [15].

3 Numerical study

The main goal of our study is to compare and contrast
the accuracy of the four finite element methods for (1)-
(2) that work with the equal order finite element pair
(12). We take Ω to be the unit square and Th to be
a uniform partition of Ω into triangles. Therefore, (12)
consists of C0 piecewise linear or quadratic elements on
triangles.

To asses numerical convergence rates, an exact ana-
lytic solution is selected and then inserted into the first-
order system (1)-(2) to obtain a right hand side and a

Method
elements PPS GS RS LS

P1 2.91 2.91 3.91 3.90
P2 3.82 3.91 4.91 4.91

Table 1 Estimated slopes from Fig. 1.

boundary function that match this solution. Our first
example has an exact pressure solution

p = sin y cos x + xy2 − 1
6
− (sin 1)(1− cos 1) . (39)

The exact velocity is defined by (2), that is, u = −∇p.
The normal component of the velocity is not zero on the
boundary and is approximated by its nodal boundary
interpolant.

The second example uses an exact solution from [20]
in which the pressure is given by

p = sin 2πx cos 2πy (40)

The exact velocity is determined from (2) and the in-
homogeneous boundary data is treated in the same way
as in the first example. Note that in both examples the
pressure has zero mean as required for solvability.

To estimate the convergence rates we solved the two
test examples using the four stabilized methods on a se-
quence of uniform triangulations Th with P1 and P2 fi-
nite element spaces. The first and the last triangulation
in the sequence have 162 and 4802 elements, respectively.
The number of variables for P1 elements on the first and
last grids is 260 and 7300 respectively; for P2 elements
variables increase from 1007 to 29007. All algebraic sys-
tems are solved using direct solvers from LAPACK. This
is done to reduce the possibility of numerical pollution
in the errors from insufficiently converged iterative solu-
tions. Then, we compute a least-squares straight line fit
to the error data and take the negative slope of this line
as an estimate of the convergence rate.

In all plots results by the different methods are marked
as follows:

– solid thick line: method (22);
– dashed thick line: method (29);
– solid thin line: method (32);
– dashed thin line: method (36).

Let (uh
RS , ph

RS) and (uh
LS , ph

LS) denote the finite ele-
ment solutions of the residual stabilized mixed method
(32), and the least-squares method (36), respectively.
From [20] and [18] we know that

‖u− uh
RS‖0 + ‖p− ph

RS‖1 = O(hk) , (41)

and

‖u− uh
LS‖H(Ω,div ) + ‖p− ph

LS‖1 = O(hk) , (42)

where k = 1 for P1 elements and k = 2 for P2 elements.
Error estimates for (22) and (29) are unavailable, and
so by our numerical study we seek to gain some insight
into their performance. In the experiments we used (22)
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Mesh size
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1. ´ 108

1. ´ 109

P1 elements

10 15 20 30 50
Mesh size

1. ´ 107

1. ´ 108

1. ´ 109

1. ´ 1010

1. ´ 1011

1. ´ 1012
P2 elements

Fig. 1 LAPACK estimates of condition numbers for the four
methods.

with α = 0.5 for Example (39), and α = 10 for Example
(40) in order to make the error values of all methods
comparable with each other and easy to plot on the same
graph. In practice, a single value of α, say α = 1, can be
used in all circumstances.

The Galerkin stabilized method (29) also requires se-
lection of a weight. However, being a weighted average
of two different weak equations, it tends to be more sen-
sitive to the choice of α, unless the grid is sufficiently
fine. If α is very large, (29) is dominated by the pri-
mal Galerkin formulation and velocity approximations
degrade. In the experiments we used the values α = 0.01
and α = 1 for the first and the second example, respec-
tively.

We start by inspecting condition number estimates
for each method, obtained by using LAPACK routines.
This data is summarized in Fig. 1 and Table 1. The
least-squares method leads to matrices with the highest
condition numbers, followed by the residual stabilized
method, and the two new methods. The lines for the
pressure projection and the Galerkin stabilized methods
overlap, meaning that their matrices have essentially the
same condition numbers. The data in Table 1 shows that
least-squares and residual stabilization have condition
numbers with the same asymptotic order. The asymp-
totic order of the pressure projection condition numbers
equals that of the Galerkin stabilized method and is one
order of magnitude less than condition numbers of the
other two methods.

Next we consider convergence of finite element so-
lutions. We report L2(Ω), H(Ω,div ) and H1-seminorm
velocity errors and L2(Ω) and H1(Ω)-seminorm pressure
errors. The last row in the tables with convergence rate
estimates lists the best approximation error (6) for P1

and P2 elements.

Results for P1 elements are discussed next. Figures
2-4 show velocity errors for the two example problems.
The H(Ω,div ) errors for all four methods are very close,
especially for the second example problem. We note that
H(Ω,div ) asymptotic errors are asserted only for the
least-squares method. The L2 and H1-seminorm errors in
the velocity are fairly close for (22), (29) and (32), while
the least-squares solution clearly lags behind. These ob-
servations are quantified by the data in Tables 2-4 which
suggest optimal, first-order convergence in H(Ω,div ) for
all four methods, and suboptimal (by approximately half
an order) convergence of the L2(Ω) velocity error in the
least-squares method. This confirms earlier studies in
[14] that show suboptimal L2 velocity convergence unless
Th has the Grid Decomposition Property, or is approxi-
mated by BDM elements; see [4].

Somewhat surprisingly, we see that the inconsistent
pressure projection stabilized method has the same or-
der of convergence as the consistently stabilized meth-
ods (29) and (32). This is despite the fact that for P1

elements, the pressure projection stabilization term (20)
is formally of first order.

The pressure variable appears to be approximated
equally well by all four finite element methods. This can
be seen by the error plots in Fig. 5-6, and the data in
Tables 5-6. An interesting feature of the pressure pro-
jection and Galerkin stabilized methods is the alternat-
ing behavior of some errors for odd and even numbered
meshes. This feature is more pronounced for the pres-
sure errors in the first example problem. The important
observation is that convergence rates on odd and even
numbered grids are identical, which means that the al-
ternating behavior does not affect the asymptotic conver-
gence of the pressure. This aspect of the method together
with its better than expected convergence rates calls for
further theoretical investigation.

We now turn attention to P2 elements. Figures 7-
9 and Tables 2-4 show velocity errors and convergence
rate estimates for the two example problems. Looking at
L2 and H1 velocity errors we see that all four methods
converge at about the same rate. However, these rates
are one order less than the best approximation error for
P2 elements, i.e., the four methods have suboptimal con-
vergence rates with respect to these norms. This is not so
for the H(Ω,div ) error. Here, the least-squares method
exhibits the optimal rate of O(h2) and clearly outper-
forms all other schemes which are only first-order ac-
curate. This behavior is consistent with (41)-(42), since
least-squares is the only formulation that is provably sta-
ble in H(Ω,div ).
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P1 elements P2 elements
Ex. PPS GS RS LS PPS GS RS LS
1 2.10 2.11 1.85 1.46 1.96 1.96 1.96 2.00
2 2.00 1.99 1.96 1.38 2.01 2.02 1.89 2.02

BA 2 3

Table 2 Estimates of convergence rates for the L2-norm ve-
locity error.

According to (42) and (41) least-squares and residual
stabilized methods should yield optimal pressure conver-
gence in H1(Ω). Figures 10-11 and Tables 5-6 confirm
this. While not implied by (42) and (41), the L2(Ω)-
norm convergence of the pressure is also optimal. The
pressure-projection method is not consistent and for P2

elements the stabilizing term (20) is second order accu-
rate. While for P1 elements the method converged bet-
ter than expected, Tables 5-6 show that this is not the
case for P2 elements. Note that the Galerkin stabilized
method exhibits the same rates.

4 Conclusions

We presented a computational study of four finite el-
ement methods for the Darcy problem that are stable
when the same low order C0 finite element spaces are
used to approximate velocity and pressure variables. The
first three of the studied methods are based on regu-
larization of the mixed variational form of the Darcy
problem and two of them appear to be new. We showed
how these methods can be obtained by regularization of
the associated Lagrangian saddle-point functional. The
fourth method was a least-squares formulation obtained
by minimization of a problem-dependent energy func-
tional.

Our study reveals that polynomial pressure projec-
tion and Galerkin-stabilized mixed methods have similar
performance. For P1 elements their accuracy is competi-
tive with that of least-squares and Galerkin least squares
methods, while their matrix condition numbers are bet-
ter. Between the two methods we give a preference to
the polynomial pressure projection algorithm because it
is less sensitive to the choice of a dimensionless parame-
ter. Another important argument in favor of the pressure
projection approach is that it can be used to stabilize the
incompressible Stokes equations [5; 13]. This opens up a
possibility to use one simple procedure to stabilize both
the Darcy and Stokes equations, as well as the combi-
nation Darcy-Stokes problem. Neither the least-squares
nor the Galerkin least-squares methods considered in this
paper can be used in this context. Thus, we can conclude
that for low order C0 elements, pressure projection stabi-
lization is a viable alternative to the existing approaches.

P1 elements P2 elements
Ex. PPS GS RS LS PPS GS RS LS
1 1.01 1.01 1.00 0.47 0.97 0.96 0.96 1.00
2 1.00 1.00 1.00 0.71 1.01 1.02 0.88 1.02

BA 1 2

Table 3 Estimates of convergence rates for the H1-
seminorm velocity error.

P1 elements P2 elements
Ex. PPS GS RS LS PPS GS RS LS
1 1.08 1.00 1.00 0.98 0.96 0.96 0.96 2.00
2 1.00 1.00 1.00 0.99 1.01 0.97 0.88 2.00

BA 1 2

Table 4 Estimates of convergence rates for the H(Ω, div )-
norm velocity error.

P1 elements P2 elements
Ex. PPS GS RS LS PPS GS RS LS
1 2.02 2.00 2.00 1.99 2.00 2.03 2.99 3.00
2 2.00 2.00 2.00 2.00 2.00 2.02 2.97 3.00

BA 2 3

Table 5 Estimates of convergence rates for the L2-norm
pressure error.

P1 elements P2 elements
Ex. PPS GS RS LS PPS GS RS LS
1 1.01 0.97 1.00 1.00 1.00 1.03 2.00 2.00
2 1.00 1.01 1.00 1.00 1.01 1.02 2.00 2.00

BA 1 2

Table 6 Estimates of convergence rates for the H1-
seminorm pressure error.
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Fig. 2 Velocity L2 errors for P1 elements. Top: Example
(39); bottom: Example (40)
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Fig. 3 Velocity H1 errors for P1 elements. Top: Example
(39); bottom: Example (40)
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Fig. 4 Velocity H(Ω, div ) errors for P1 elements. Top: Ex-
ample (39); bottom: Example (40)
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Fig. 5 Pressure L2 errors for P1 elements. Top: Example
(39); bottom: Example (40)
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Fig. 6 Pressure H1 errors for P1 elements. Top: Example
(39); bottom: Example (40)
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Fig. 7 Velocity L2 errors for P2 elements. Top: Example
(39); bottom: Example (40)
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Fig. 8 Velocity H1 errors for P2 elements. Top: Example
(39); bottom: Example (40)
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Fig. 9 Velocity H(Ω, div ) errors for P2 elements. Top: Ex-
ample (39); bottom: Example (40)
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Fig. 10 Pressure L2 errors for P2 elements. Top: Example
(39); bottom: Example (40)
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Fig. 11 Pressure H1 errors for P2 elements. Top: Example
(39); bottom: Example (40)
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